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Abstract

Neural Architecture Search (NAS) is a popular method for automatically designing optimized archi-

tectures for high-performance deep learning. In this approach, it is common to use bilevel optimization
where one optimizes the model weights over the training data (lower-level problem) and various hyper-
parameters such as the configuration of the architecture over the validation data (upper-level problem).
This paper explores the statistical aspects of such problems with train-validation splits. In practice, the
lower-level problem is often overparameterized and can easily achieve zero loss. Thus, a-priori it seems
impossible to distinguish the right hyperparameters based on training loss alone which motivates a better
understanding of the role of train-validation split. To this aim this work establishes the following results:
e We show that refined properties of the validation loss such as risk and hyper-gradients are indicative of
those of the true test loss. This reveals that the upper-level problem helps select the most generalizable
model and prevent overfitting with a near-minimal validation sample size. Importantly, this is established
for continuous spaces — which are highly relevant for popular differentiable search schemes.
e We establish generalization bounds for NAS problems with an emphasis on an activation search prob-
lem. When optimized with gradient-descent, we show that the train-validation procedure returns the best
(model, architecture) pair even if all architectures can perfectly fit the training data to achieve zero error.
o Finally, we highlight rigorous connections between NAS, multiple kernel learning, and low-rank ma-
trix learning. The latter leads to novel algorithmic insights where the solution of the upper problem can
be accurately learned via efficient spectral methods to achieve near-minimal risk.

1 Introduction

Hyperparameter optimization (HPO) is a critical component of modern machine learning pipelines. It is
particularly important for deep learning applications where there are many possibilities for choosing a va-
riety of hyperparameters to achieve the best test accuracy. A crucial hyperparameter for deep learning is
the architecture of the network. The architecture encodes the flow of information from the input to output,
which is governed by the network’s graph and the set of nonlinear operations that transform hidden feature
representations. In this case HPO is often referred to as Neural Architecture Search (NAS). NAS is critical
to finding the most suitable architecture in an automated manner without extensive user trial and error.
HPO/NAS problems are often formulated as bilevel optimization problems and critically rely on a train-
validation split of the data, where the parameters of the learning model (e.g. weights of the neural network)
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